Gamma Processes and Finite Time Survival Probabilities

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite time ruin probabilities for tempered stable insurance risk processes

We study the probability of ruin before time t for the family of tempered stable Lévy insurance risk processes, which includes the spectrally positive inverse Gaussian processes. Numerical approximations of the ruin time distribution are derived via the Laplace transform of the asymptotic ruin time distribution, for which we have an explicit expression. These are benchmarked against simulations...

متن کامل

A Hyperexponential Approximation to Finite-Time and Infinite-Time Ruin Probabilities of Compound Poisson Processes

This article considers the problem of evaluating infinite-time (or finite-time) ruin probability under a given compound Poisson surplus process by approximating the claim size distribution by a finite mixture exponential, say Hyperexponential, distribution. It restates the infinite-time (or finite-time) ruin probability as a solvable ordinary differential equation (or a partial differential equ...

متن کامل

Finite Time Ruin Probabilities and Martingales

In this paper we give an introduction to collective risk theory in its simplest form. Our aims are to indicate how some basic facts may be obtained by martingale methods and to point out some open problems

متن کامل

A Hyperexponential Approximation to Finite- and Infinite-time Ruin Probabilities of Compound Poisson Processes

This article considers the problem of evaluating infinite-time (or finite-time) ruin probability under a given compound Poisson surplus process. By approximating the claim size distribution by a finite mixture exponential, say Hyperexponential, distribution. It restates the infinite-time (or finitetime) ruin probability as a solvable ordinary differential equation (or a partial differential equ...

متن کامل

Survival probabilities in time-dependent random walks.

We analyze the dynamics of random walks in which the jumping probabilities are periodic time-dependent functions. In particular, we determine the survival probability of biased walkers who are drifted towards an absorbing boundary. The typical lifetime of the walkers is found to decrease with an increment in the oscillation amplitude of the jumping probabilities. We discuss the applicability of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ASTIN Bulletin

سال: 1993

ISSN: 0515-0361,1783-1350

DOI: 10.2143/ast.23.2.2005094